J2 SERIES

The J2 Series transducer takes a force input of up to 3 lbs. and converts it into a linear voltage output on a X and Y axis. Utilizing strain gauges in a Wheatstone bridge configuration, very small changes in force can be detected to produce a corresponding output voltage. Output voltages are ratiometric (proportional) to the supplied input voltage. Circuit type choices include full bridge, half bridge and isolated. We offer short travel, short travel with a pushbutton, long travel, and long travel with a pushbutton. Custom cases, buttons, and wires are available upon request. Tested to military standards, the J2 is used in aerospace, off-highway, military and other demanding applications.

Features:

- Short (.05 max) or long (.20 typ.) travel options
- Available with or without pushbutton
- Custom cases and buttons available
- Applications include:
 - **Flight control grips**

Specifications Subject To Change Without Notice

- **Cursor control**
- Target acquisition
- Small null hysteresis useful for applications requiring a consistent center voltage

Ihr offizieller Vertriebspartner
ALDERS
ALDERS
Indicate. Control. Connect.

Amoldstraße 19
Amoldstraße 19
Adv 2152 8955-0
vertrieb@alders.de / www.alders.de

Operating Force:	3.0 lbs.
Operating Temp Range:	-40°C to +71°C
Storage Temp Range:	-55°C to +85°C
Travel:	To mechanical stop 0.05 inches max
MATERIALS:	
Button:	Thermoplastic or anodized aluminum
Wire:	MIL-W-16878/4, 12 inches min, 24 AWG
Hardware:	None provided

STRAIN GAUGE, FLANGE MOUNT, SHORT TRAVEL

EXCITATION VOLTAGE TABLE FOR J2-S1 AND J2-S2						
Circuit Configuration	Excitation Voltage (Units VDC)	Sensitivity Until Stop (Units VDC/lb. +/- 20%)	Max Output at Stop (Units VDC)	Null Output at 25°C Bipolar (Units VDC)	Null Output at 25°C Supply to Ground (Units VDC)	Full Scale Travel Cycles (Units x 10:)
B3	+/- 7.5	+/- 0.45	+/- 1.62	+/- 0.10		0.2
G3	+ 15.0	+/- 0.45	+/- 1.62		7.5 +/- 0.10	0.2
B4	+/- 6.0	+/- 0.45	+/- 1.62	+/- 0.10		0.2
G4	+ 12.0	+/- 0.45	+/- 1.62		6.0 +/- 0.10	0.2
B5	+/- 6.0	+/- 0.33	+/- 1.19	+/- 0.06		1.0
G5	+ 12.0	+/- 0.33	+/- 1.19		6.0 +/- 0.06	1.0
B6	+/- 5.0	+/- 0.33	+/- 1.19	+/- 0.05		1.0
G6	+ 10.0	+/- 0.33	+/- 1.19		5.0 +/- 0.05	1.0
B7	+/- 5.0	+/- 0.25	+/- 0.90	+/- 0.05		1.0
G7	+ 10.0	+/- 0.25	+/- 0.90		5.0 +/- 0.05	1.0

STRAIN GAUGE, FLANGE MOUNT, SHORT TRAVEL

AVAILABLE CIRCUITS

EXCITATION VOLTAGE TABLE FOR J2-S3						
Circuit Configuration	Excitation Voltage (Units VDC)	Sensitivity Until Stop (Units VDC/Ib. +/- 20%)	Max Output at Stop (Units VDC)	Null Output at 25°C Bipolar (Units VDC)	Null Output at 25°C Supply to Ground (Units VDC)	Full Scale Travel Cycles (Units x 106)
B1	+/- 7.5	+/- 0.45	+/- 1.62	+/- 0.10		0.3
G1	+ 15.0	+/- 0.45	+/- 1.62		7.5 +/- 0.10	0.3
B2	+/- 6.0	+/- 0.45	+/- 1.62	+/- 0.10		0.2
G2	+ 12.0	+/- 0.45	+/- 1.62		6.0 +/- 0.10	0.2
B3	+/- 6.0	+/- 0.33	+/- 1.19	+/- 0.06		1.0
G3	+ 12.0	+/- 0.33	+/- 1.19		6.0 +/- 0.06	1.0
B4	+/- 5.0	+/- 0.33	+/- 1.19	+/- 0.05		1.0
G4	+ 10.0	+/- 0.33	+/- 1.19		5.0 +/- 0.05	1.0
B5	+/- 5.0	+/- 0.25	+/- 0.90	+/- 0.05		1.0
G5	+ 10.0	+/- 0.25	+/- 0.90		5.0 +/- 0.05	1.0

12

S3 SERIES

FULL BRIDGE CIRCUIT TYPE, SHORT TRAVEL

The J2-S4 Series of strain gauge based force transducers provides analog output proportional to the force applied to the button. The J2-S4 bottom mount transducer offers short travel, full bridge circuit, a flat button style, and 1 million cycle life.

The strain gauge transducer compensates for outside influences, like temperature, allowing the transducer to maintain accuracy even in the most demanding environments.

The J2-S4's threaded bushing case offers a secure switch retention method for a wide range of panel thicknesses.

Applications include flight control, operating ground vehicles, and cursor control or target acquisition.

Features:

- Full bridge circuit type
- 1 million cycle life
- Short travel in each direction
- Watertight to IP68S
- Shorter behind panel
- Multiple button types available

J2-S4 Transducer

Standard Characteristics/Ratings:

ELECTRICAL RATINGS (+/- 6 VDC):					
Sensitivity	.50 Volts per lb. typical				
Insulation Resistance:	100MΩ min @ 50VDC				
Null Temp Coefficient:	+/08% full scale per degree C max				
Null Hysteresis:	+/006 VDC within 1 second after release				
Sensitivity Temp Coefficient:	+/2% full scale per degree C				
Null Output:	0VDC +/100VDC				
Resolution:	Infinite				
Element Resistance:	1000Ω +/- 15%				
Seal:	IP68S Watertight				
Operating Force:	3.0 lbs. typical				
Operating Temp Range:	-54°C to +71°C				
Storage Temp Range:	-57°C to +85°C				
Travel:	.05" max travel each direction				
Cycle Life:	1,000,000 cycles; 1 cycle = max travel & return				
MATERIALS:					
Button:	Anodized aluminum or plastic				
Case:	Black anodized aluminum				
Hardware:	Lockwasher, hex nut and button set screws				

A. Full Bridge B6. 2. Terminals

AP2. Conical Hat, Black Thermoplastic BBA. Flat Button, Black Anodized Aluminum BCA. Flat Button, Clear Anodized Aluminum

EXCITATION VOLTAGE					
CIRCUIT CONFIGURATION UNITS VDC) CONFIGURATION CONFIGURATI			MAX OUTPUT AT STOP (UNITS VDC)	NULL OUTPUT AT 25°C BIPOLAR (UNITS VDC)	FULL SCALE TRAVEL CYCLES (UNITS x10 ⁶)
B6	±6.0	±0.50	±1.80	±0.10	0.2